Design approach to
efficient blockcipher modes

Kazuhiko Minematsu, NEC Corporation
The Fourth Asian Workshop on Symmetric Key Cryptography,
19-22, December 2014, SETS Chennai, India

Introduction

* Blockcipher mode : turning a blockcipher (BC)
Into a more usable function

» Ex. CBC encryption mode seen as a
conversion of fixed-length encryption into
variable-length encryption

Designing modes

Designing secure and optimized BC mode is
generally a complex task

This talk will show some useful ideas to
reduce this complexity, with applications to
authenticated encryption (AE)

The first part is about “inverse-free” mode,
and a corresponding CAESAR candidate, OTR

The second part is about “direct tweaking”
and a corresponding CAESAR candidate,

CLOC and SILC

Removing Blockcipher Inverse

Modes w/ BC inverse
» Some blockcipher modes use blockcipher
Inverse (decryption)

» Ex. CBC mode needs BC inverse (D) for the
decryption

Our task

* Given a target mode which needs BC inverse,
* Modify it to inverse-free,

« Keeping features as much as possible
— I/O format
— # of primitive calls
— security properties
— implementation options (e.g. parallelizability)

Our task

* Given a target mode which needs BC inverse,

* Modify it to inverse-free,

« Keeping features as much as possible

— I/O format
— # of primitive calls
— security properties

— implementation options (e.g. parallelizability)

IM]__M[2] ___MI3];
N !
> | E, E, E,
R S .

IN C] C[2] C3]!

Advantages of removing inverse

« We have several reasons for it, taking AES for
example

e Size benefit

— Hardware gate : ~10K additional gates for AES-
decryption core

— Software memory reduction
* Inverse S-box, inverse T-tables etc.

« Speed benefit
— For some platforms AES-dec is slower than AES-enc
(due to the difference between MixCol and InvMixCol)

— Ex. Byte-wise AES on 8-bit MCU : ~20 to 50 %
slowdown

— Some SIMD codes on High-end CPU
« Bitslice or Vector-permutation
* Not true for AES-NI

Advantages of removing inverse

 Security benefit

— For modes w/ BC inverse, BC is (generally)
required to be secure against Chosen-ciphertext
attack (CCA)

 Strong pseudorandom permutation (SPRP)

— For inverse-free modes, we need a weaker
assumption, Chosen-plaintext attack (CPA)
security

* PRP or psedorandom function (PRF)

e Others

— Enables the use of non-invertible primitives, e.qg.
HMAC

Basic idea

A classical way to implement cryptographic
permutation using cryptographic functions

Feistel !

More formally, we implement 2n-bit
permutation by iterating a Feistel

permutation having n-bit blockcipher as
round function

Also called Luby-Rackoftf cipher (LRC)

N N

N
E EK

Security of LR Cipher

Brief review of Luby-Rackoff
Assuming each round function is an independent PRF,
3-round LRC is CPA-secure (i.e. a PRP)

4-round LRC is CCA-secure (i.e. a SPRP)

For both cases, distinguishing advantage from 2n-bit
random permutation is O(g4/2") for g queries

Inverse-removal : Basic Approach

* Find a target mode (say CBC)

« Step 1. Define a 2-block version of CBC, using a
2n-bit blockcipher G

Inverse-removal : Basic Approach

 Step 2. Find the exact security condition for G
to keep the original security bounds w.r.t n

— typically birthday bound, i.e. O(g?%/2")

Inverse-removal : Basic Approach

 Step 3. Instantiate G by LRC w/ forward BC
function, then find # of rounds meeting the
security condition

* 4-round is usually enough?, but we often find
a smaller-round is secure

* May need further modifications...

pa
5
o
Y
b\
T\3

1 As long as the original security is birthday-bound security based on SPRP assumption

Case of Authenticated Encryption

» We focus on authenticated encryption (AE),
which provides confidentiality and integrity

* We consider nonce-based AE
— Each encryption takes unique nonce N
— Plaintext M is encrypted to Ciphertext C, with Tag
T, where [M| = |C|

— Additionally we may have Associated Data (AD) as
information not encrypted but MACed

* The target is OCB mode, which is a seminal
nonce-based AE developed by Rogaway (et
al.)

OCB (simplified)

* Encryption = ECB w/ mask

« MAC = encryption of plaintext checksum (XORs of plaintext
blocks)

« Mask is a function of (nonce, block index), and Key
— Needs one BC call to produce all masks

MI[1] M[2] MI[I-1] MI] SUM
g(N,1)
¢l) 4
g(N,1) »% g(N,2) »% g(N,I-1) *)% e, P (N 9%
Ey Ey oo o0 Ey E¢
GND > 9N B gD D l
A 4 v v \ 4
C[1] C[2] C[I-1] Cll] T
Mask function SUM

g(N,i) = Ex(N) x 2" (over GF(2")) for OCB2 = M[1]® M[2]1 & ... ® MII]

Security of OCB
« Mask-Enc-Mask can be seen as an instance of
Tweakable BC (Tweak = (N,1))

* OCB proof requires CCA-security for this TBC
— (Tweakable SPRP, TSPRP)

M[1] M[1]

Tweak | g(N,1) ~>$ Tweak g(N,1) »;
= (N,1) = (N,1)

—> EK —_— DK

g(N.1) > g(N,1) —>$
v

C[1] C[1]

Features of OCB

OCB has a number of strong features

« Rate-1:1 BC call for 1 input block

— Here rate = # of BC calls for 1 input block
Parallelizable for encryption and decryption
* On-line processing

Provable security based on the assumption
BC = SPRP

— Security up to birthday bound — advantage
O(a?/2") for privacy/authenticity notions, for o
blocks in queries

But it needs BC inverse for decryption

Removing Inverse from OCB
« Step 1: set OCB for 2n-bit LRC G

— Each round takes a mask g(N,block index, round index)
« @G itself takes tweak (N, block index)

« If we follow OCB proof, G needs to be 2n-bit TSPRP
w/ adv. O(g?/2") -> G should be 4-round LRC

MI2i-1] MI2i]

G D

Trivially works, but rate is 2!

= ’

Tweak = (N,)) =—>

C[2i-1] Cl2i]

Removing Inverse from OCB

« Step 2: we found the exact condition on G, which is as follows
 For each tweak (N,i), (let us seti=1)

1 An encryption query (X[1],X[2]) generates random output
(Y[11,Y[2])

2 Given (X[1],X[2]) and (Y[1],Y[2]), decryption query (Y'[1],Y'[2])
not equal to (Y[1],Y[2]) generates an n-bit unpredictable part in
the output (X'[1],X'[2])

Allowing distinguishing bias of O(g?/2")

X[1] X[2] X'[1] X'[2]
I o A 0
Tweak Tweak
= (N,l) = (N,l)
—_ —_—>
=
Y[1] Y[2] Y|'[1] Y'|[2]

Using 2-round is enough

« Step 3 : find the minimum # of rounds:

* The conditions are about one enc-query and
dec-query for one tweak

 And these conditions are satisfied with 2-round
LRC. Why?

X[1 X[2
[]gN,l,l) [2]

&
o

v
Y[1] Y[2] Y'[1] Y'[2]

Using 2-round is enough

« Admitting bias O(g?/2"), round functions can be seen
as independent random functions

* Then, (Y[1],Y[2]) is uniformly random

Tweak
= (N,1)

X[1] X[2]

v
Y[1] Y[2]

2n-bit randomness for
an enc-query

22

Using 2-round is enough

« Given (X[11,X[2])(Y[1],Y[2]), and dec query (Y'[1],Y'[2]),
we have two cases :
 When Y'[1] # Y[1], X'[2] is independent and random

e Unless Z' collides with Z
« /'=Z occurs with prob. 1/2"

n-bit randomness for X'[2] in a dec-query

X[1] X[2] X'[1] X'2]
Z TZ’
Tweak Tweak -
= (N,1) = (N,1) /
—_— _
- - '
| |
Y[1] Y[2] Y'[1] # Y[1] Y'[2]

2n-bit randomness for
an enc-query 23

Using 2-round is enough

 When Y'[1] = Y[1] and Y'[2] # Y[2], Z' is always
different from Z and X'[2] is independent and

random

X[1] X[2]

Z
Tweak
= (N,1)

v
Y[1] Y[2]

2n-bit randomness for
an enc-query

n-bit

randomness for X'[2] in a dec-query

X'[1] X'[2]
A

.
= (N,1)
—>
=)
Y'[1] = Y[1] Y'[2] # Y[2]

24

OTR : Offset Two-Round (simplified)

* The result: OTR mode presented at Eurocrypt 2014
* (Roughly) Encryption = 2-round LRC,

* MAC = Encryption of plaintext checksum, which is
XORs of even plaintext block

M[1] M[2] MI3] M[4] M[I-1] MI[I] SUM
g(N,2,f) g(N,l/2,f)
I g'(N,I) 4%
o o EK
|ELBE | aizzs) l
C1] C[2] C[3] C[4] C[l-1] CI] T
Mask function SUM

g(N,ij) = Ex(N) x 2" (xor L ifj ="s") = M[2]6d M[4] @ ... D M[]]

Additional points in design

* Need to handle partial-length messages
— Padding to 2n bits is no good (expansion!)

« OTR avoids unnecessary ciphertext expansion,
with dedicated functions for the last chunk

Last chunk M[l-1] MI[I] Last chunk
= n+1~2n g(N,l/2,f) = 1~n bits
bits

C[l-1] C[l]

Security of OTR

A brief description of nonce-based AE security
notions :

Privacy : the hardness of distinguishing (C,T)
from random sequence, using enc queries (N,M)

Authenticity : the hardness of producing a

forgery (N',C',T'), using enc and dec queries

— Forgery = given multiple (N,M,C,T) obtained by enc
queries, generate a new (N',C', T") which is valid

The observations so far allow to prove O(g?/2")

advantages for both notions, for ¢ blocks in

gueries

— Similar to OCB and many others

Summary of OTR

* Mostly keeping OCB's good properties
— Rate-1
— Parallelizable for Enc & Dec
— On-line (under 2-block partition)
* And inverse-free, provably secure if BC is a PRP or PRF

 CAESAR submission as a mode of AES (AES-OTR)

Table 1. A comparison of AE modes. Calls denotes the number of
calls for m-block message and a-block header and one-block nonce,

without constants.

Mode Calls|On-line|Parallel |Primitive

CCM 3] a + 2m no no E

GCM [5]| m [E] and a + m [Mul] yes ves| E,Mul'

EAX [16] a+2m yes no E

OCB [32,43,46] a-+m yes ves| E,E!
CCFB [35]|a + em for some 1 < ¢ yes no E
OTR a+m| yes" yesT E

t GF(2") multiplication
} Security degrades as ¢ approaches 1
T two-block partition

Comparison of AE modes

28

OTR implementations w/ AES

» Basic Expectation

— Almost the same speed as OCB = almost the
same speed as enc-only mode

— with smaller size (sw memory / hw gates)
— Dec is as fast as Enc

 Suitable to heterogeneous environment

OTR implementations with AES

* On Intel CPU w/ AESNI

— Bogdanov et al. [BLT14] (Haswell Core 15)
* Less than 1 cycles/byte (cpb)
« difference from OCB3 is ~0.15 cpb

— We obtained similar figures with our own codes
(0.88 cpb at Haswell Core i7)

OTR implementations with AES

* On 8-bit Atmel AVR (ATmega 128)

— Assembly AES from open source (AVRAES), runs at
156 cpb for enc, 196 cpb for dec

— Mode is written in assembly
— ~240 cpb for 256 input bytes, for both Enc/Dec
— ~2100 ROM bytes, ~180 RAM bytes

 For reference, OCB on Atmega 128 [IMGM14]
— AVRAES + mode written in C
— 315 cpb for Enc, 354 for Dec (~256 input bytes)
— ~5000 ROM, ~970 RAM bytes

OTR implementations with AES

» Hardware : working on FPGA

* Third-party implementation for any platform
Is always welcome!

Possible Further Applications

« OTR was a quite successful application, but there
may be some other application areas ;

 Large-block cipher mode ?
— CMC and EME (Rate-2, using inverse)

— Recent AEZ v3 (a CAESAR candidate) by Hoang et al. did
the work for EME, results in a rate-2.5 scheme

Possible Further Applications

OTR was a quite successful application, but there
may be some other application areas ;

Large-block cipher mode ?
— CMC and EME (Rate-2, using inverse)

— Recent AEZ v3 (a CAESAR candidate) by Hoang et al. did
the work for EME, results in a rate-2.5 scheme

On-line (authenticated) encryption ?
— TC1/2/3 by Rogaway and Zhang
— CAESAR submissions (COPA, ELmD, POET)

« COBRA : inverse-free but turned out to be wrong (withdrawn
due to the attack by Nandi)

Questions :

— Achievable rate

— Appropriate security notions (for 2n-bit block ?)
» Answers can depend on the target functionality

Direct tweaking and Decomposition

Motivation

* Modes generally need its own memories
outside BC we use

— OCB/OTR's mask, CBC-MAC chain value, etc.

e How we can reduce these memories?

— Not by implementation, not by changing the
blockcipher — mode refinements

— Possibly keeping the efficiency
 Beneficial to constrained devices

— Often comes with several side effects (reduced
pre-computation etc.)

A bad example

EAX [Bellare-Rogaway-Wagner] : a rate-2 AE
mode

— Enc-then-auth style

— Provable security

EAX-prime : ANSI standard for Smart Grid
(C12.22)

— Derived from EAX, but requires fewer state
memories than EAX, which would be good for
constrained devices

Both use different variants of CMAC (tweaked

CMACQ)

and the difference is significant in security

Tweaked CMAC in EAX

* 3 variants with CMAC(tweak) = CMAC(tweak || X),
tweak = 0,1,2 (in n bits)
— E(tweak) can be cached as initial mask
— 4 ~ 6 state memory blocks

Tweak
t=0orlor2 MI1] I\/I[m 1] MIm] || 10...0 partial block indicator
|M[m| n)
otherW|se)
Ey Ec| oeoe E EK L = Eg(
1 or 2 state
If cached, + 3 CMACK“)(M) memories

state memories
1 state memory

for chain

38

Tweaked CMAC in EAX-Prime

« 2 variants with CMAC[D] and CMAC[Q]
(tweak = D, Q)

* Initial mask set = last mask set ({D,Q})
 Reduced state memories : 2 ~ 3 blocks

Tweakt MI[1] M[m-1] M[m] || 10..0 partial block indicator
(IM[m]|=n)
or
Q (= 4|-) (otherwise)
oo o EK L = E(
1 or 2 state

1 state memory
for chain

[CMACK[t]() memories

39

Insecure Separation

« CMACI[D] and CMACI[Q] fail to provide
(independent) PRFs

 In case [M| £ n;

CMACI[D] when [M4|=n CMACIQ] when 0<|M,|<n
M, M.,||10...0
D ﬂéx— D Q ﬂ%}* Q
E¢ Ex
E (M) Ex(M,][[10...0)

Making M; = M,||10...0 yields the same outputs ->
unlikely for two independent PRFs

Insecure Separation

« CMACI[D] and CMACI[Q] fail to provide
(independent) PRFs

 In case [M| £ n;

CMACI[D] when [M4|=n CMACIQ] when 0<|M,|<n
M, M,||10...0

 ABNRE o

Allows instant attacks w/ 1-block =
input against EAX-prime ([M- l
Lucks-Morita-Iwata FSE 2013])

Elvr— =x(M,][10...0)

Making M; = M,||10...0 yields the same outputs ->
unlikely for two independent PRFs

A good example

How to avoid 2L / 4L masking in CMAC, w/o another
BC call ?

GCBC [Nandi] did the job

Instead of masking, GCBC introduces in-state
modification,

which we call tweak function or direct tweaking

X[1] X[m-1] X[m] || 10...0 or X[m]
l f << i = 1 if [X[m]|=n,
P ®oo0 P v 7 i = 2 otherwise
P

GCBC Y

(slightly different from the original, and for 1-block message
the operation is different)

Security of GCBC

* How we prove security of GCBC?

» Use decomposition via dummy mask
— Initially employed by Iwata-Kurosawa for proof of CMAC

* We define 4 n-bit functions using a random dummy mask U
« GCBC can be simulated by these 4 functions
« GCBC is easily analyzed if 4 functions were independent

PRFs

|
<<1 << 2
v v

§.4 8

Ql Q2 Q3

P

|

Q4

X[1]

, |

Q1

-

X[2] X[3]||10..
Q2 Q3/4
Y

GCBC analysis

« We prove 4 functions are (comp-independent) PRFs
« Step 1. find input differential probability constraints
— e.g. max_c Pr[U xor (U< <1)=c] for Q2 and Q3
- ,C, = 6 constraints

« Step 2. prove all constraints have a small upper bound
— secure from the theory of tweakable blockcipher [Liskov-Rivest-

Wagner]
| |
U U U
| $ % % |
<<1 << 2
P P T T

P P
- . ! ! ¢ : J

Ql Q2 Q3 Q4 R1 R2 R3

R4

GCBC analysis (Con

td.)

 Step 3. Proving CBC-MAC-like function using

4 PRFs
| | |
X[1]
' |
2
R1
| } ' ' L

R1 R2 R3 R4

X[2] X[3]||10..
R2 R3 /4
%

The case of Authenticated Encryption

Initial design

» We start with a generic composition
— Enc-then-MAC
— MAC = CBC-MAC-like

— Enc = CTR or OFB or CFB : We chose CFB for its
small memory

— One-key : insecure at this stage

Ala]
Al2] Ala-1] J{ M[m]

N
l M[1] M[m-1]
A[l] ﬁEK %ﬁEK .o &EK A4 EK A\ 4 EK k\l/ >EK‘$V $T)EK41

A4

C[1] C[2] C[m-1] C[m]
A:AD C[m]
N : Nonce C[1] C[2] C[m-1] }L
M : Plaintext >[E, $ >[E, $—>EK & El—> T

C: Ciphertext
T:Tag

Initial design

CCM, EAX, and EAX-prime use input masking
based on E(const)

» While we want our AE to work without masking

— Small memory and fast for short input w/o
precomputation (or, key-agility)

— Suitable to constrained devices, short-packet
communication

alL Ala] bL N cL cL
i_) Al2] Ala-1] Jg }L i MI1] MIm- 1] M[m]
A[l] EK g > EK coe &EK A\ "4 N EK Ay~ EK k\l, \U’ EK EK_ * |
0 =E—L C[1] C[2] C[m-1] C[m]
A :AD dL Clm] el
N : Nonce }L (11 C2] C[m-1] }L l
M : Plaintext &->[E, % >[E, $—>EK &—E—> T

C: Ciphertext
T:Tag

All]

Initial design

« We want to make it secure with tweak
functions

* How should we modify plain CBC-MAC +
CFB?

* How many tweak functions needed, where to
Insert?

Ala] N
A[2] Alapl] l M[1] M[2] o M[m-1] M[m]
E, %> E]... SBE Eo[E, EKH.. EKJ—l
0 —>g4 1 C[1] C21 Cm-1] Clm]
~~ A:AD C[m]
N : Nonce C[11 C[2] C[m-1]
M : Plaintext E $ >[E, $9EK E— T

C: Ciphertext
T:Tag

Concrete design = CLOC

* Investigated a large number of possibilities

« We found a solution using 5 tweak functions + 2
msb-fixing functions
— h, f1, 12, g1, g2, and fix0, fix1

* The result is CLOC (presented at FSE 2014 and
submitted to CAESAR) [Iwata-M-Guo-Morioka]

Ala] N
A[2] Ala-1] 5] [y M[1] M[2] M[m-1] M[m]
=) b 4 L =
All] ~PE, RF&-?EK $_)E|< &—E, fi | = EK%... =>1E e
_— { s C[1] Cl2l Cm-1] C[m]
if msb(A[1]) = 1 :
S f1if |A[a]| = n, C[m]
Otherwise identity func. Otherwise f2 C[1] C[2] Clm-1] =
\
4 $—>EK ST HE,
—”, - A
glif|M| =0, [—L91_|—> E.HE T] fLif |C[m]| = n,
Otherwise 2

Otherwise g2

o

Decomposition of CLOC

How we prove the security of CLOC?

Decomposition needs to consider various cases on
the lengths of Nonce, AD, and plaintext/ciphertext

The analysis is considerably more complex than the
case of MAC, as follows

A=A[1]

All AH}@—) Ex
]

All
]

MI[1]

M[m]

Nonemp
N EK EK%"'%EK g.. M
C[1] Q7 C[m]
@—h12 C=empty
— 9l PE—>T
Rl Quyy _— .
Q Rl R1 Q. [C[l]]
R1 Q5. C=C[1]
e — 92 >{E, 12PlE — T
R3 R3 Q5 C[m] C=C[1]C[2]...C[m
C[1]]], m>1
Lo~ *—n 2 HEf—> T
R3 R3 Q.. R3[] R3 Q25,26
ML1] M[m] Nonemp
A=A[1]A[2]..Ala], a>1, A N | >[E E‘*V RS iM
: Q
E i 2PlE] ... $—>EK g Ey \,1'f1/2|9 V C[1] o C[m]
R2Q1516_-_>._> C=empty
'
Q; RL R1 Q,; R2ZR2 Q, R2 [] = T
56 C[].]
R2Q22,23 [] C=C[1]

26 functions !

—1 22 P|E, /2>y T

C=C[1]C[2]...C]

R3 R3S Qux C[m]]m] o

C[1]
—L92_|—>EK<*7>EK $ >...$—>EK A2 Ef—> T

R3 R3Q, R3 (-] RS Qe

Conditions for the tweak functions

If these 26 functions were independent, proving security is
not difficult

We have 26 functions -> ,.C, =325 differential provability
constraints to make CLO(_2 secure !

Removing equivalent ones, there remains 55 constraints
Ideally all should be satisfied w/ prob = 1/2"
How we make ?

i@ f i & f2h fi®fah hdgofy gof1 @ gifah
iegifi 1&h fa b gifi & fo gof1 & f2h
i@ gifih i©g fo @ gifih h@

i @ gofi 1D g fo @ gofi h® gofo

gif: & gofy

i @gofih fi @ gifih f2 dgofih gifi & fih
i@ fih fi ®gofih fao®fih gifi @ gofih gife @ gofa
1B fo f1 &f2 fa @ gifeh gify & gofa gifa & f2h
i@gife fidgife f2@gefoh gifi @ gefeh gofe © gifih
I B glth f1 ® glfzh g1 @ go g1f1 @ f2h ngg @ fih

i@ gofe fidgefo hafy gofi @ gifih gafz @ gifzh

e.g. max_c Pr_U[f1(U)
xor f2(h(U)) = c]

i & gaofoh f1 & gofoh hbgifi gofi &fih gofy & fah

Fig. 9. Differential probability constraints of fi,f2, g1,g2, and h

53

Building the tweak functions

 For efficiency reason we require the tweak functions to be
— computed by word permutation and XOR, with 4 words
— -> each function is a 4x4 matrix over GF(2~n/4)
— -> differential pr = 1/2" iff corresponding sum of matrices is full
rank (4)

« Define a generator matrix M as

<

o= OO0O
=N e N

N
OO O
OO
SN—

— K- M = (K[1], K[2], K[3], K[4]) - M = (K[2], K[3], K[4], K[1] xor K[2])
— Assign M' to a tweak function
— MB=MP = identity so we have 145 space for search

— Each M' (except i=5 and 10) can be implemented using at most 4
word XORs and a block permutation

Search

We associate (iy, iy, I3, ig Is) €{1, ..., 14}> with
(f1, T2 91, 92, h)

— f;: ML £5: M2, g;: M3, g,: M# h: MP

Tested all (iy, iy, i3, 14 1c) €{1, ..., 14}> with 55
constraints, using computer

— matrix rank computations

864 combinations proved to be secure
Define a cost function to choose the best
combination (# of XORs etc.)

— The chosen one is (iy, 1, 13, 14, 15) = (8, 1, 2, 1, 4)

— This specifies CLOC

Performance of CLOC-AES

* Primary focus : embedded software
* Atmel AVR ATmegal28

— 8-bit microprocessor

— Using AVRAES
« 156.7 cpb for encryption, 196.8 cpb for decryption

— Compare CLOC with EAX and OCB3

* All modes are written in C

« OCB3 is taken from OCB website, w/ some
modifications for optimized performance on AVR

Software Implementation

ROM| RAM Init Speed (cycles/byte)
(bytes)|(bytes)|(cycles)|Data 16| 32 64 96| 128] 256
CLOC| 2980 362 1999 750.1|549.0| 448.4| 414.9| 398.2| 373.0
EAX| 2772 402| 12996 913.6|632.5| 490.8| 443.6| 419.9| 384.5
OCB-E| 5010 971 4956| 1217.5|736.1| 495.5| 412.2| 375.1| 314.9
OCB-D| 5010 971 4956| 1252.2|773.4| 534.0| 451.2| 414.3| 354.4

» 1-block AD, no static AD computation

* In CLOC, the RAM usage is low and Init is fast,

and it is fast for short input data, up to around
128 bytes

57

Conclusions

Two design ideas to make blockcipher modes
efficient

Inverse-removal : removing BC inverse w/o

iIncreasing BC calls

— substituting BC/BC! with 2-round Feistel

— Result is OTR : inverse-free, rate-1, parallel AE

Direct tweaking : reducing the memory amount,

removing precomputation

— Resutlt is CLOC : a low-overhead AE, fast for short
Inpu

— CLOC focuses on (embedded) software

— We also designed SILC as a variant of CLOC for
(constraind) hardware

Would be applicable to other application areas ...

Thank you !!

