
Design approach to
efficient blockcipher modes

Kazuhiko Minematsu, NEC Corporation
The Fourth Asian Workshop on Symmetric Key Cryptography,

19-22, December 2014, SETS Chennai, India

1

Introduction

• Blockcipher mode : turning a blockcipher (BC)
into a more usable function

• Ex. CBC encryption mode seen as a
conversion of fixed-length encryption into
variable-length encryption

2

EK

N

EK EK

M[1] M[2] M[3]

EK

M

C
N C[1] C[2] C[3]

Designing modes

• Designing secure and optimized BC mode is
generally a complex task

• This talk will show some useful ideas to
reduce this complexity, with applications to
authenticated encryption (AE)

• The first part is about “inverse-free” mode,
and a corresponding CAESAR candidate, OTR

• The second part is about “direct tweaking”
and a corresponding CAESAR candidate,
CLOC and SILC

3

Removing Blockcipher Inverse

4

Modes w/ BC inverse

• Some blockcipher modes use blockcipher
inverse (decryption)

• Ex. CBC mode needs BC inverse (DK) for the
decryption

5

EK

N

EK EK

M[1] M[2] M[3]

N C[1] C[2] C[3]

DK

N

DK DK

M[1] M[2] M[3]

N C[1] C[2] C[3]

Our task
• Given a target mode which needs BC inverse,
• Modify it to inverse-free,
• Keeping features as much as possible

– I/O format
– # of primitive calls
– security properties
– implementation options (e.g. parallelizability)

6

EK

N

EK EK

M[1] M[2] M[3]

N C[1] C[2] C[3]

DK

N

DK DK

M[1] M[2] M[3]

N C[1] C[2] C[3]

Our task
• Given a target mode which needs BC inverse,
• Modify it to inverse-free,
• Keeping features as much as possible

– I/O format
– # of primitive calls
– security properties
– implementation options (e.g. parallelizability)

7

EK

N

EK EK

M[1] M[2] M[3]

N C[1] C[2] C[3]

M[1] M[2] M[3]

N C[1] C[2] C[3]

EK EK EK

Advantages of removing inverse
• We have several reasons for it, taking AES for

example
• Size benefit
– Hardware gate : ~10K additional gates for AES-

decryption core
– Software memory reduction

• Inverse S-box , inverse T-tables etc.

• Speed benefit
– For some platforms AES-dec is slower than AES-enc

(due to the difference between MixCol and InvMixCol)
– Ex. Byte-wise AES on 8-bit MCU : ~20 to 50 %

slowdown
– Some SIMD codes on High-end CPU

• Bitslice or Vector-permutation
• Not true for AES-NI

8

Advantages of removing inverse

• Security benefit
– For modes w/ BC inverse, BC is (generally)

required to be secure against Chosen-ciphertext
attack (CCA)
• Strong pseudorandom permutation (SPRP)

– For inverse-free modes, we need a weaker
assumption, Chosen-plaintext attack (CPA)
security
• PRP or psedorandom function (PRF)

• Others
– Enables the use of non-invertible primitives, e.g.

HMAC

9

Basic idea

• A classical way to implement cryptographic
permutation using cryptographic functions

• Feistel !

• More formally, we implement 2n-bit
permutation by iterating a Feistel
permutation having n-bit blockcipher as
round function

• Also called Luby-Rackoff cipher (LRC)

10

EK

n

Security of LR Cipher
• Brief review of Luby-Rackoff
• Assuming each round function is an independent PRF,
• 3-round LRC is CPA-secure (i.e. a PRP)
• 4-round LRC is CCA-secure (i.e. a SPRP)
• For both cases, distinguishing advantage from 2n-bit

random permutation is O(q2/2n) for q queries

11

F1

F2

F1

F2

F3

F4

F3

n

Inverse-removal : Basic Approach

• Find a target mode (say CBC)

• Step 1 . Define a 2-block version of CBC, using a
2n-bit blockcipher G

12

EK

N

EK EK

M[1] M[2] M[3]

N C[1] C[2] C[3]

G

N

G G

M[1] M[2] M[3]

N C[1] C[2] C[3]

n 2n

Inverse-removal : Basic Approach

• Step 2. Find the exact security condition for G
to keep the original security bounds w.r.t n

– typically birthday bound, i.e. O(q2/2n)

13

EK

N

EK EK

M[1] M[2] M[3]

N C[1] C[2] C[3]

G

N

G G

M[1] M[2] M[3]

N C[1] C[2] C[3]

n 2n

E = PRP G = …. ?

Inverse-removal : Basic Approach

• Step 3. Instantiate G by LRC w/ forward BC
function, then find # of rounds meeting the
security condition

• 4-round is usually enough1, but we often find
a smaller-round is secure

• May need further modifications…

14

G

N

G G

M[1] M[2] M[3]

N C[1] C[2] C[3]

2n

F
1

F
2

F
1

F
2

F
3

F
4

F
3

1 As long as the original security is birthday-bound security based on SPRP assumption

Case of Authenticated Encryption

• We focus on authenticated encryption (AE),
which provides confidentiality and integrity

• We consider nonce-based AE
– Each encryption takes unique nonce N

– Plaintext M is encrypted to Ciphertext C, with Tag
T, where |M| = |C|

– Additionally we may have Associated Data (AD) as
information not encrypted but MACed

• The target is OCB mode, which is a seminal
nonce-based AE developed by Rogaway (et
al.)

15

OCB (simplified)
• Encryption = ECB w/ mask
• MAC = encryption of plaintext checksum (XORs of plaintext

blocks)
• Mask is a function of (nonce, block index), and Key

– Needs one BC call to produce all masks

16

M[1] M[l-1] M[l]

EK EK EK…

M[2]

g(N,1) g(N,2)

C[1] C[2]

g(N,1) g(N,2)

C[l-1]

g(N,l-1)

EK

g(N,l)

C[l]

EK

SUM

g'(N,l)

T

g(N,l-1)

g(N,i) = EK(N) x 2i (over GF(2n)) for OCB2
SUM
= M[1]⊕ M[2] ⊕ … ⊕ M[l]

Mask function

Security of OCB

• Mask-Enc-Mask can be seen as an instance of
Tweakable BC (Tweak = (N,i))

• OCB proof requires CCA-security for this TBC

– (Tweakable SPRP, TSPRP)

17

M[1]

EK

g(N,1)

C[1]

g(N,1)

n

M[1]

DK

g(N,1)

C[1]

g(N,1)

n

Tweak
= (N,1)

Tweak
= (N,1)

Features of OCB

OCB has a number of strong features

• Rate-1 : 1 BC call for 1 input block
– Here rate = # of BC calls for 1 input block

• Parallelizable for encryption and decryption

• On-line processing

• Provable security based on the assumption
BC = SPRP
– Security up to birthday bound – advantage

O(�2/2n) for privacy/authenticity notions, for �
blocks in queries

• But it needs BC inverse for decryption

18

Removing Inverse from OCB
• Step 1: set OCB for 2n-bit LRC G

– Each round takes a mask g(N,block index, round index)

• G itself takes tweak (N, block index)

• If we follow OCB proof, G needs to be 2n-bit TSPRP
w/ adv. O(q2/2n) -> G should be 4-round LRC

19

M[2i-1] M[2i]

C[2i-1] C[2i]

EK

g(N,i,1)

g(N,i,4)

EK

EK

g(N,i,2)

EK

g(N,i,3)

G

Tweak = (N,i)

Trivially works, but rate is 2 !

Removing Inverse from OCB
• Step 2: we found the exact condition on G, which is as follows
• For each tweak (N,i), (let us set i=1)
1 An encryption query (X[1],X[2]) generates random output

(Y[1],Y[2])
2 Given (X[1],X[2]) and (Y[1],Y[2]), decryption query (Y’[1],Y’[2])

not equal to (Y[1],Y[2]) generates an n-bit unpredictable part in
the output (X’[1],X’[2])

• Allowing distinguishing bias of O(q2/2n)

20

X[1] X[2]

Y[1] Y[2]

EK

EK

g(N,1,2)

X’[1] X’[2]

Y’[1] Y’[2]

EK

EK

g(N,1,2)

G G-1

Tweak
= (N,1)

Tweak
= (N,1)

Using 2-round is enough
• Step 3 : find the minimum # of rounds:
• The conditions are about one enc-query and

dec-query for one tweak
• And these conditions are satisfied with 2-round

LRC. Why?

21

X[1] X[2]

Y[1] Y[2]

EK

g(N,1,1)

EK

g(N,1,2)

X’[1] X’[2]

Y’[1] Y’[2]

EK

g(N,1,1)

EK

g(N,1,2)

Tweak
= (N,1)

Tweak
= (N,1)

Using 2-round is enough

• Admitting bias O(q2/2n), round functions can be seen
as independent random functions

• Then, (Y[1],Y[2]) is uniformly random

22

X[1] X[2]

Y[1] Y[2]

2n-bit randomness for
an enc-query

Tweak
= (N,1)

F(N,1,1)

F(N,1,2)

Using 2-round is enough

• Given (X[1],X[2])(Y[1],Y[2]), and dec query (Y’[1],Y’[2]),
we have two cases :

• When Y’[1] ≠ Y[1], X’[2] is independent and random

• Unless Z’ collides with Z

• Z’= Z occurs with prob. 1/2n

23

X[1] X[2]

Y[1] Y[2]

X’[1] X’[2]

Y’[1] ≠	Y[1] Y’[2]

2n-bit randomness for
an enc-query

n-bit randomness for X’[2] in a dec-query

Tweak
= (N,1)

Tweak
= (N,1)

F(N,1,1)

F(N,1,2)

F(N,1,1)

F(N,1,2)

Z’Z

Using 2-round is enough

• When Y’[1] = Y[1] and Y’[2] ≠ Y[2], Z’ is always
different from Z and X’[2] is independent and
random

24

X[1] X[2]

Y[1] Y[2]

X’[1] X’[2]

Y’[2] ≠	Y[2]Y’[1] = Y[1]

2n-bit randomness for
an enc-query

n-bit randomness for X’[2] in a dec-query

Tweak
= (N,1)

Tweak
= (N,1)

F(N,1,1)

F(N,1,2)

Z
F(N,1,1)

F(N,1,2)

Z’

OTR : Offset Two-Round (simplified)
• The result : OTR mode presented at Eurocrypt 2014

• (Roughly) Encryption = 2-round LRC,

• MAC = Encryption of plaintext checksum, which is
XORs of even plaintext block

25

M[1] M[2]

C[1] C[2]

SUM

T

n

M[l-1] M[l]

C[l-1] C[l]

…
EK

g(N,1,f)

EK

g(N,1,s)

M[3] M[4]

C[3] C[4]

EK

g(N,2,f)

EK

g(N,2,s)

EK

g'(N,l)
EK

g(N,l/2,f)

EK

g(N,l/2,s)

g(N,i,j) = EK(N) x 2i (xor L if j = ``s”)

Mask function
SUM
= M[2]⊕ M[4] ⊕ … ⊕ M[l]

Additional points in design

• Need to handle partial-length messages

– Padding to 2n bits is no good (expansion!)

• OTR avoids unnecessary ciphertext expansion,
with dedicated functions for the last chunk

26

M[l-1] M[l]

C[l-1] C[l]

EK

g(N,l/2,f)

EK

g(N,l/2,s)

cu
t

p
a
d

0n

M[l]

EK

g(N,l/2,f)

cu
t

C[l]

Last chunk
= n+1~2n
bits

Last chunk
= 1~n bits

Security of OTR

• A brief description of nonce-based AE security
notions :

• Privacy : the hardness of distinguishing (C,T)
from random sequence, using enc queries (N,M)

• Authenticity : the hardness of producing a
forgery (N’,C’,T’), using enc and dec queries

– Forgery = given multiple (N,M,C,T) obtained by enc
queries, generate a new (N’,C’,T’) which is valid

• The observations so far allow to prove O(�2/2n)
advantages for both notions, for � blocks in
queries

– Similar to OCB and many others

27

Summary of OTR

• Mostly keeping OCB’s good properties
– Rate-1

– Parallelizable for Enc & Dec

– On-line (under 2-block partition)

• And inverse-free, provably secure if BC is a PRP or PRF

• CAESAR submission as a mode of AES (AES-OTR)

28
Comparison of AE modes

OTR implementations w/ AES

• Basic Expectation

– Almost the same speed as OCB = almost the
same speed as enc-only mode

– with smaller size (sw memory / hw gates)

– Dec is as fast as Enc

• Suitable to heterogeneous environment

29

OTR implementations with AES

• On Intel CPU w/ AESNI

– Bogdanov et al. [BLT14] (Haswell Core i5)

• Less than 1 cycles/byte (cpb)

• difference from OCB3 is ~0.15 cpb

– We obtained similar figures with our own codes
(0.88 cpb at Haswell Core i7)

30

OTR implementations with AES

• On 8-bit Atmel AVR (ATmega 128)

– Assembly AES from open source (AVRAES), runs at
156 cpb for enc, 196 cpb for dec

– Mode is written in assembly

– ~240 cpb for 256 input bytes, for both Enc/Dec

– ~2100 ROM bytes, ~180 RAM bytes

• For reference, OCB on Atmega 128 [IMGM14]

– AVRAES + mode written in C

– 315 cpb for Enc, 354 for Dec (~256 input bytes)

– ~5000 ROM, ~970 RAM bytes

31

OTR implementations with AES

• Hardware : working on FPGA

• Third-party implementation for any platform
is always welcome!

32

Possible Further Applications

• OTR was a quite successful application, but there
may be some other application areas ;

• Large-block cipher mode ?
– CMC and EME (Rate-2, using inverse)
– Recent AEZ v3 (a CAESAR candidate) by Hoang et al. did

the work for EME, results in a rate-2.5 scheme

• On-line (authenticated) encryption ?
– TC1/2/3 by Rogaway and Zhang
– CAESAR submissions (COPA, ELmD, POET)

• COBRA : inverse-free but turned out to be wrong (withdrawn
due to the attack by Nandi)

• Questions :
– Achievable rate
– Appropriate security notions (for 2n-bit block ?)

• Answers can depend on the target functionality

33

Possible Further Applications

• OTR was a quite successful application, but there
may be some other application areas ;

• Large-block cipher mode ?
– CMC and EME (Rate-2, using inverse)
– Recent AEZ v3 (a CAESAR candidate) by Hoang et al. did

the work for EME, results in a rate-2.5 scheme

• On-line (authenticated) encryption ?
– TC1/2/3 by Rogaway and Zhang
– CAESAR submissions (COPA, ELmD, POET)

• COBRA : inverse-free but turned out to be wrong (withdrawn
due to the attack by Nandi)

• Questions :
– Achievable rate
– Appropriate security notions (for 2n-bit block ?)

• Answers can depend on the target functionality

34

Direct tweaking and Decomposition

35

Motivation

• Modes generally need its own memories
outside BC we use

– OCB/OTR’s mask, CBC-MAC chain value, etc.

• How we can reduce these memories?

– Not by implementation, not by changing the
blockcipher – mode refinements

– Possibly keeping the efficiency

• Beneficial to constrained devices

– Often comes with several side effects (reduced
pre-computation etc.)

36

A bad example

• EAX [Bellare-Rogaway-Wagner] : a rate-2 AE
mode
– Enc-then-auth style

– Provable security

• EAX-prime : ANSI standard for Smart Grid
(C12.22)
– Derived from EAX, but requires fewer state

memories than EAX, which would be good for
constrained devices

• Both use different variants of CMAC (tweaked
CMAC)

• and the difference is significant in security

37

Tweaked CMAC in EAX
• 3 variants with CMAC(tweak) = CMAC(tweak || X),

tweak = 0,1,2 (in n bits)
– EK(tweak) can be cached as initial mask
– 4 ~ 6 state memory blocks

38

EK EK EK

M[1] M[m-1] M[m] || 10…0

…

CMACK
(t)(M)

(|M[m|=n)

Partial block indicator

(otherwise)

t = 0 or 1 or 2

or
2L

4L

Tweak

L = EK(0
n)EK

If cached, + 3
state memories

1 or 2 state
memories

1 state memory
for chain

Tweaked CMAC in EAX-Prime
• 2 variants with CMAC[D] and CMAC[Q]

(tweak = D, Q)

• Initial mask set = last mask set ({D,Q})
• Reduced state memories : 2 ~ 3 blocks

39

EK EK EK

M[1] M[m-1] M[m] || 10…0

…

CMACK[t](M)

(|M[m|=n)

Partial block indicator

(otherwise)

oror
D

Q

D (=2L)

Q (=4L)

Tweak t

L = EK(0
n)

1 or 2 state
memories

1 state memory
for chain

Insecure Separation

• CMAC[D] and CMAC[Q] fail to provide
(independent) PRFs

• In case |M| ≤ n;

40

EK

EK(M1)

D

M1

D

CMAC[D] when |M1|=n

EK

EK(M2||10…0)

Q

M2||10…0

Q

CMAC[Q] when 0≤|M2|<n

Making M1 = M2||10…0 yields the same outputs ->
unlikely for two independent PRFs

Insecure Separation

• CMAC[D] and CMAC[Q] fail to provide
(independent) PRFs

• In case |M| ≤ n;

41

EK

EK(M1)

D

M1

D

CMAC[D] when |M1|=n

EK

EK(M2||10…0)

Q

M2||10…0

Q

CMAC[Q] when 0≤|M2|<n

Making M1 = M2||10…0 yields the same outputs ->
unlikely for two independent PRFs

Allows instant attacks w/ 1-block
input against EAX-prime ([M-

Lucks-Morita-Iwata FSE 2013])

A good example
• How to avoid 2L / 4L masking in CMAC, w/o another

BC call ?
• GCBC [Nandi] did the job
• Instead of masking, GCBC introduces in-state

modification,
• which we call tweak function or direct tweaking

42

P P

P

X[1] X[m] || 10…0 or X[m]

… i = 1 if |X[m]|=n,
i = 2 otherwise

X[m-1]

Y

<< i

(slightly different from the original, and for 1-block message
the operation is different)

GCBC

Security of GCBC
• How we prove security of GCBC?
• Use decomposition via dummy mask

– Initially employed by Iwata-Kurosawa for proof of CMAC

• We define 4 n-bit functions using a random dummy mask U
• GCBC can be simulated by these 4 functions
• GCBC is easily analyzed if 4 functions were independent

PRFs

43

P P

P

U

UU

U

<< 1

Q1 Q2 Q3 Q4

P

U

<< 2

X[1] X[2]

Y

Q1 Q2

X[3]||10..

Q3 / 4

GCBC analysis
• We prove 4 functions are (comp-independent) PRFs
• Step 1. find input differential probability constraints

– e.g. max_c Pr[U xor (U<<1)=c] for Q2 and Q3
– 4C2 = 6 constraints

• Step 2. prove all constraints have a small upper bound
– secure from the theory of tweakable blockcipher [Liskov-Rivest-

Wagner]

44

P P

P

U

UU

U

<< 1

Q1 Q2 Q3 Q4

P

U

<< 2 P P

P

U

UU

U

<< 1

R1 R2 R3 R4

P

U

<< 2

GCBC analysis (Contd.)

• Step 3. Proving CBC-MAC-like function using
4 PRFs

45

P P

P

U

UU

U

<< 1

R1 R2 R3 R4

P

U

<< 2

X[1] X[2]

Y

R1 R2

X[3]||10..

R3 / 4

The case of Authenticated Encryption

46

Initial design

• We start with a generic composition

– Enc-then-MAC

– MAC = CBC-MAC-like

– Enc = CTR or OFB or CFB : We chose CFB for its
small memory

– One-key : insecure at this stage

47

N

EKA[1]

A[2]

EK … EK

A[a-1]

A[a]

EK

M[1]

EK

M[2]

… EK

M[m-1]

C[1] C[2] C[m-1]

M[m]

C[m]

T

C[1]

EK

C[2]

… EK

C[m-1]

C[m]

EK

EK

EK

A : AD
N : Nonce
M : Plaintext
C : Ciphertext
T : Tag

Initial design

• CCM, EAX, and EAX-prime use input masking
based on E(const)

• While we want our AE to work without masking
– Small memory and fast for short input w/o

precomputation (or, key-agility)

– Suitable to constrained devices, short-packet
communication

48

N

EKA[1]

A[2]

EK … EK

A[a-1]

A[a]

EK

M[1]

EK

M[2]

… EK

M[m-1]

C[1] C[2] C[m-1]

M[m]

C[m]

T

C[1]

EK

C[2]

… EK

C[m-1]

C[m]

EK

EK

EK

A : AD
N : Nonce
M : Plaintext
C : Ciphertext
T : Tag

aL bL cL

dL eL

cL cL

EK0 L

Initial design

• We want to make it secure with tweak
functions

• How should we modify plain CBC-MAC +
CFB?

• How many tweak functions needed, where to
insert?

49

N

EKA[1]

A[2]

EK … EK

A[a-1]

A[a]

EK

M[1]

EK

M[2]

… EK

M[m-1]

C[1] C[2] C[m-1]

M[m]

C[m]

T

C[1]

EK

C[2]

… EK

C[m-1]

C[m]

EK

EK

EK

A : AD
N : Nonce
M : Plaintext
C : Ciphertext
T : Tag

EK0 L

Concrete design = CLOC

• Investigated a large number of possibilities

• We found a solution using 5 tweak functions + 2
msb-fixing functions
– h, f1, f2, g1, g2, and fix0, fix1

• The result is CLOC (presented at FSE 2014 and
submitted to CAESAR) [Iwata-M-Guo-Morioka]

50

N

EKA[1]

A[2]

EK … EK

A[a-1]

A[a]

ozp
V

EK

M[1]

EK

M[2]

… EK

M[m-1]

C[1] C[2] C[m-1]

M[m]

C[m]

cu
t

Tf t

C[1]

EK

C[2]

… EK

C[m-1]

C[m]

EK

ozp

g j

cu
t

EK

EK

f i
fix 1

ozp

h

fix 0

fix 1

h if msb(A[1]) = 1
Otherwise identity func.

f1 if |A[a]| = n,
Otherwise f2

g1 if |M| = 0,
Otherwise g2

EK
g1 T

cu
t f1 if |C[m]| = n,

Otherwise f2

Decomposition of CLOC
• How we prove the security of CLOC?

• Decomposition needs to consider various cases on
the lengths of Nonce, AD, and plaintext/ciphertext

• The analysis is considerably more complex than the
case of MAC, as follows

51

A=A[1]

EK VA[1
]

h1/2

o
zp

N
oz
p

f1/2 C=empty

C=C[1]

EK
g1 T

EK

C[1]

g2 Tf1/2 EK

oz
p

m
sb
0

EK T

C[1]

EK … EK

C[m]

EK

oz
p

g2 f1/2

C=C[1]C[2]…C[m
], m>1

EK VA[1
]

EK … EK

A[a]

EK

N
oz
pm

sb
0

h1/2

C=empty

C=C[1]

EK
g1 T

EK

C[1]

g2 Tf1/2 EK

oz
p

EK T

C[1]

EK … EK

C[m]

EK

oz
p

g2 f1/2

C=C[1]C[2]…C[
m], m>1

A=A[1]A[2]…A[a], a>1,

f1/2

EK

M[1]

EK … EK

C[1]

M[m]

C[m]

cu
t

m
sb
1 m

sb
1

Q1 R1
Q11~14R1

Q17

Q7~10R1

EK

M[1]

EK … EK

C[1]

M[m]

C[m]

cu
t

m
sb
1 m

sb
1

Q17

Q18~21R1

R3 Q25,26R3

R3 Q24R3 R3 Q25,26R3

Q1 R1 Q2,3R1 R2 Q4R2 R2 …

…

Q15,16R2

Q5,6R2

Q22,23R2

R3 Q25,26R3

R3 Q25,26R3Q24R3 R3 …

Nonemp
M

Nonemp
M

52

26 functions !

Conditions for the tweak functions
• If these 26 functions were independent, proving security is

not difficult
• We have 26 functions -> 26C2 =325 differential provability

constraints to make CLOC secure !
• Removing equivalent ones, there remains 55 constraints
• Ideally all should be satisfied w/ prob = 1/2n

• How we make ?

53

e.g. max_c Pr_U[f1(U)
xor f2(h(U)) = c]

Building the tweak functions
• For efficiency reason we require the tweak functions to be

– computed by word permutation and XOR, with 4 words
– -> each function is a 4x4 matrix over GF(2^n/4)
– -> differential pr = 1/2n iff corresponding sum of matrices is full

rank (4)

• Define a generator matrix M as

– K ∙ M = (K[1], K[2], K[3], K[4]) ∙ M = (K[2], K[3], K[4], K[1] xor K[2])
– Assign Mi to a tweak function
– M15=M0 = identity so we have 14^5 space for search
– Each Mi (except i=5 and 10) can be implemented using at most 4

word XORs and a block permutation

54

Search

• We associate (i1, i2, i3, i4, i5) ∈	{1, . . . , 14}5 with
(f1, f2, g1, g2, h)

– f1: M
i1, f2: M

i2, g1: M
i3, g2: M

i4, h: Mi5

• Tested all (i1, i2, i3, i4, i5) ∈	{1, . . . , 14}5 with 55
constraints, using computer

– matrix rank computations

• 864 combinations proved to be secure

• Define a cost function to choose the best
combination (# of XORs etc.)

– The chosen one is (i1, i2, i3, i4, i5) = (8, 1, 2, 1, 4)

– This specifies CLOC

55

Performance of CLOC-AES

• Primary focus : embedded software

• Atmel AVR ATmega128

– 8-bit microprocessor

– Using AVRAES

• 156.7 cpb for encryption, 196.8 cpb for decryption

– Compare CLOC with EAX and OCB3

• All modes are written in C

• OCB3 is taken from OCB website, w/ some
modifications for optimized performance on AVR

56

Software Implementation

• 1-block AD, no static AD computation

• In CLOC, the RAM usage is low and Init is fast,
and it is fast for short input data, up to around
128 bytes

57

Conclusions
• Two design ideas to make blockcipher modes

efficient
• Inverse-removal : removing BC inverse w/o

increasing BC calls
– substituting BC/BC-1 with 2-round Feistel
– Result is OTR : inverse-free, rate-1, parallel AE

• Direct tweaking : reducing the memory amount,
removing precomputation
– Result is CLOC : a low-overhead AE, fast for short

input
– CLOC focuses on (embedded) software
– We also designed SILC as a variant of CLOC for

(constraind) hardware

• Would be applicable to other application areas …

58

Thank you !!

59

